Advances in Parallel Partitioning, Load Balancing
and Matrix Ordering for Scientific Computing

Erik G. Boman!, Umit V. Catalyurek?, Cédric Chevalier!, Karen D.
Devine'!, Ilya Safro®, Michael M. Wolf!

! Scalable Algorithms Dept., Sandia National Laboratories

2 Biomedical Informatics and Electrical & Computer Engineering Depts., Ohio State Univ.

3 Mathematics and Computer Science Division, Argonne National Laboratory

4 Computer Science Dept., Univ. of Illinois at Urbana-Champaign

Abstract. We summarize recent advances in partitioning, load balancing, and matrix ordering
for scientific computing performed by members of the CSCAPES SciDAC institute.

1. Introduction

Most large scientific computations are now carried out on parallel computers. As many of
these architectures have distributed memory, it is important to distribute the data across the
processors in a manner that achieves high parallel efficiency. Computing an effective distribution
of the data is known as the load-balancing (or partitioning) problem.

A related problem is finding a good ordering of the unknowns of sparse matrices in simulations
that use sparse direct solvers. Indeed, in Cholesky or LU factorizations, the factors are usually
less sparse than the input matrix, and the fill depends on the order of the unknowns.

For both load balancing and sparse matrix ordering, we can use combinatorial approachs
based on graph or hypergraph partitioning. Zoltan [10] is a toolkit that provides efficient and
robust parallel data partitioning, as well as related functionalities like sparse matrix ordering.

A graph G = (V, E) is a set V of vertices and a set E of edges made up of pairs of vertices
(E C V x V). A hypergraph is an extension of this model that allows each hyperedge to have
two or more vertices. Each hyperedge is a subset of V.

As the general graph- or hypergraph-partitioning problem is NP-complete, several heuristics
have been developed to provide good quality within a short execution time. The most popular
scheme is the multilevel framework that coarsens the (hyper)graph to a smaller (hyper)graph
with similar topological properties which is easily partitioned; it then projects a partition on the
small (hyper)graph back to the original one, refining it to improve partition quality. The phase
that reduces the (hyper)graph size is called coarsening; it is followed by the initial partitioning
and the uncoarsening phases.

In this paper, we describe an improved coarsening method in multilevel graph partitioning.
We discuss application of hypergraph and graph partitioning to distributing large sparse matrices
to optimize matrix-vector multiplication. And we discuss progress in parallel sparse matrix
ordering for direct solvers and present results from a SciDAC application.

2. Coarsening with a Weighted Aggregation Scheme

Many common multilevel schemes for simple graphs are based on strict coarsening (Strict
Aggregation SAG). It is carried out by matching groups (usually pairs) of vertices together
and representing each group with a single vertex in the coarsened space (e.g., matching [13, 15],
first choice [9]). Another class of multilevel schemes used for several combinatorial optimization
problems is based on algebraic multigrid (AMG or Weighted Aggregation WAG) [14, 16].

By contrast to SAG, in WAG each node can be divided into fractions, and different fractions
belong to different aggregates. As AMG solvers have shown, weighted, instead of strict
aggregation is important in order to express the likelihood of nodes to belong together; these
likelihoods will then accumulate at the coarser levels, reinforcing each other where appropriate.
This enables more freedom at the coarser levels and avoid making hardened local decisions, such
as edge matching, before accumulating the relevant global information, while a strict aggregation
may lead to conflicts between local and global pictures.

LEVEL I
LEVEL 0

LEVEL 1

Figure 1. The left figure represents a SAG coarsening; each fine vertex belongs to one coarse
vertex. The figure on the right is a WAG coarsening which allows fine vertices to be split across
several coarse vertices.

We have shown [8] that the coarsening schemes in AMG can be adapted to graph partitioning;
they produce higher quality partitions with less variation (i.e., greater robustness). A summary
of these observations may be found in Figure 2. We compare WAG against the most popular
technique in the graph partitioning community, Heavy Edge Matching (HEM) [15], which
performs a strict pairing of vertices. We use two kinds of refinement during uncoarsening.
The simplest is the gradient method, a local optimization without any hill-climbing possibility;
the other is the more powerful Fidducia-Mattheyses (FM) [11] refinement, which allows hill-
climbing,.

We believe this approach is also more scalable (since it is similar to the approaches in multigrid
codes like ML and Hypre), making it suitable for large problems. We have made steps toward
extending the method from graphs to hypergraphs [3] for use in Zoltan’s hypergraph partitioners.

3. Sparse Matrix Partitioning

A partitioning problem of particular importance is sparse matrix partitioning, where the goal
is to reduce the communication in sparse matrix-vector multiplication. Since sparse matrix-
vector multiplication is a kernel in many numerical algorithms, any improvement in parallel
performance can impact a wide range of applications. We have performed an extensive empirical
comparison of established and several new methods [5], demonstrating that 2D methods can
reduce both the communication volume and the number of messages compared to traditional
1D row (or column) methods. Aggregated results for a set of 1413 test matrices are shown in
Figure 3.

A drawback of 2D methods has been that most are quite expensive to compute. We have
developed a new algorithm, nested dissection partitioning [1, 2] (see Figure 4), which is as
effective as previous 2D methods to reduce communication but essentially as fast to compute as
1D methods.

40 Normalized Edge Cuts, 1.0 = HEM-FM

4.00 —

3.50 —

3.00 — —
= WAG-FM

2.50 — 00— 01— ~— ™ WAG-Gradient
200 +~p————0—0—80—F—0—1— | I | - HEMfGradTent

150 70— 80— 00— 00— 00— 01— 00— 00— — /1 —

1.00 T — 18 10— 1 11 10— W —— 00— 00— — 1 —

o.50 11— 10— U101 =11 —

0.00

Figure 2. Edge cut for different coarsening schemes, scaled so that HEM with FM refinement
is 1.0. In this test, we allow a fine vertex to be split over up to four coarse vertices.

Fraction of wins
Fraction of wins

Figure 3. Performance profiles for comparison of common 1D (RW, CW) and some 2D (FG,
JL, CH, PR) partitioning methods. We compared communication volume (left) and number of
messages (right). Higher is better.

4. Sparse Matrix Ordering for Direct Solvers

Solving large, sparse linear systems of the type Az = b is a kernel that takes much compute time
in scientific computing. Although iterative solvers are often preferred, sparse direct solvers are
used for highly ill-conditioned problems or within preconditioners. We have investigated matrix
reordering schemes to reduce fill in sparse matrix factorization and, thus, allow larger systems
to be solved. We also provide ordering software (nested dissection) in Zoltan. Preliminary
results indicate that ordering methods provided by PT-Scotch [7] can be significantly better
than previous approaches. In an experiment using a large sparse matrix from a plasma code
at Princeton Plasma Physics Lab (95 million nonzeros), we showed that the number of floating
point operations in the factorization phase was reduced by up to 35% with Zoltan and PT-Scotch
as compared to ParMetis (Figure 5). The memory footprint was also smaller with PT-Scotch.
We are currently working with the SuperLU authors so that parallel Zoltan ordering may be

B # g

Figure 4. Nested dissection partitioning of a sparse matrix into four parts. Each nonzero is
colored to show to which part (processor) it belongs. Original matrix (left) and permuted to
reveal the nested structure (right).

supported in future versions of SuperLU _dist, which would make this new capability more easily
accessible to a wide range of applications.

Timings for matrix181

140 7
120
100
v
2 80
=
<
60
40 J
20 - '
A .
e — e VI ¥
8 16 82 o e = -

#procs
- Order-Parmetis == Factorization-Parmetis v Total-Parmetis
-4 Order-Scotch #=Factorization-Scotch < Total-Scotch

Figure 5. SuperLU_Dist 2.3 runtimes to factorize matriz181, for a Parmetis or a Scotch ordering
of the unknowns. Typical use on this matrix is up to 64 processors.

We are also developing novel sparse matrix ordering approaches based on hypergraph
partitioning [6, 4, 12]. For symmetric matrices, we have continued work on a novel hypergraph
partitioning-based nested dissection approach that leverages structural decompositions of the
form AAT or ADAT for achieving better orderings [6, 4]. Direct solutions of the systems in
the form of ADATxz = b requires triangular factorization of ADAT, where A is a sparse and
possibly rectangular matrix, and D is a diagonal matrix. We have proposed a new ordering
method that applies hypergraph partitioning directly to A [4], as opposed to the standard
approach of nested dissection (by vertex separator) on ADAT. We also developed a simple, yet
effective, structural factorization method that allows us to apply our ordering method to square
symmetric matrices [4]. Furthermore, our hypergraph-based approach is better suited for the
multilevel framework by accurately representing the separator at each level of the hierarchy.

For unsymmetric matrices, the reordering problem is even more challenging. Ordering is
generally done as a preprocessing step, but in the unsymmetric case pivoting is needed at run-
time to maintain numerical stability. Therefore, a column permutation is used to heuristically
reduce fill, though row interchanges from pivoting may cause fill later. There are currently two
approaches: Symmetrization (order A + AT), or use a local ordering like COLAMD directly on
A. Neither approach is satisfactory for large problems in parallel, because the first creates extra
work and loss of concurrency, while the second is inherently serial. We have therefore developed
a new algorithm, HUND [12] (Hypergraph Unsymmetric Nested Dissection), that is based on
hypergraph partitioning and matching, both of which CSCAPES researchers are already working
on. Major advantages of HUND over previous methods are that (i) it produces orderings of
consistently high quality, (ii) it uses the structure of the original matrix (not symmetrized), and
(iii) it is possible to parallelize. Parallel implementation of HUND in Zoltan is in progress.

Acknowledgments

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the U. S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94A1.85000. The CSCAPES Institute is supported by the U.S. Department
of Energy’s Office of Science through the SciDAC program.

References

[1] E. G. Boman. A nested dissection approach to sparse matrix partitioning. Proc. of Applied Math. and
Mechanics, 7(1):1010803 — 1010804, 2007. ICIAMO07, Zurich, Switzerland.

[2] E. G. Boman and M. M. Wolf. A nested dissection approach to sparse matrix partitioning for parallel
computations. Technical Report 2008-5482J, Sandia National Laboratories, NM, 2008.

[3] A. Buluc and E. Boman. Towards scalable parallel hypergraph partitioning. In Proc. of Computer Science
Research Institute (CSRI) 2008, Albuquerque, NM, 2008. Sandia National Labs.

[4] U. V. Catalyurek, C. Aykanat, and E. Kayaaslan. Hypergraph partitioning-based fill-reducing ordering.
Technical Report OSUBMI-TR-2009-n02 and BU-CE-0904, The Ohio State University, Dept. of Biomedical
Informatics and Bilkent University, Computer Engineering Dept., 2009. Submitted for publication.

[5] U. V. Catalyurek, C. Aykanat, and B. Ugar. On two-dimensional sparse matrix partitioning: Models,
methods, and a recipe. Technical Report OSUBMI_TR_2008_1n04, The Ohio State University, Department
of Biomedical Informatics, 2008. Submitted for publication.

[6] U. V. Qatalyiirek. Hypergraph Models for Sparse Matriz Partitioning and Reordering. PhD thesis, Bilkent
University, Computer Engineering and Information Science, Nov 1999.

[7] C. Chevalier and F. Pellegrini. PT-SCOTCH: A tool for efficient parallel graph ordering. Parallel Computing,
34(6-8):318-331, 2008.

[8] C. Chevalier and I. Safro. Comparison of coarsening schemes for multilevel graph partitioning. In Proc. of
3rd Workshop on Learning and Intelligent Optimization (LION-3), Trento, Italy, 2009.

[9] J. Cong and J. R. Shinnerl, editors. Multilevel Optimization and VLSICAD. Kluwer, 2003.

[10] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan. Zoltan data management services for
parallel dynamic applications. Computing in Science and Engineering, 4(2):90-97, 2002.

[11] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions. In
Proceedings of the 19th Design Automation Conference, pages 175-181. IEEE, 1982.

[12] L. Grigori, E. Boman, S. Donfack, and T. Davis. Hypergraph unsymmetric nested dissection ordering for
sparse LU factorization. Technical Report 2008-1290J, Sandia National Labs, 2008. Submitted to STAM
J. Sci. Comp.

[13] B. Hendrickson and R. W. Leland. A multi-level algorithm for partitioning graphs. In Supercomputing,
1995.

[14] Y. F. Hu and J. A. Scott. A multilevel algorithm for wavefront reduction. SIAM J. Scientific Computing,
23:2000-031, 2001.

[15] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
Technical Report 95-035, University of Minnesota, June 1995.

[16] I. Safro, D. Ron, and A. Brandt. Multilevel algorithms for linear ordering problems. Journal of Experimental
Algorithmics, 13:1.4-1.20, 2008.

